This function plots the results of the parameter estimation. This includes the absolute and relative sequencing depth (i.e. library size factor) as well as marginal log mean, log dispersion and dropout. Furthermore, the mean-dispersion relationship with loess fit for simulations is visualized. Lastly, the mean-dropout rate is presented as a smooth scatter plot.
plotParam(estParamRes, Annot=TRUE)
estParamRes | The output of |
---|---|
Annot | A logical vector. If |
A ggplot object.
if (FALSE) { # using example data set data("CELseq2_Gene_UMI_Counts") data("CELseq2_Gene_Read_Counts") Batches <- data.frame(Batch = sapply(strsplit(colnames(CELseq2_Gene_UMI_Counts), "_"), "[[", 1), stringsAsFactors = FALSE, row.names = colnames(CELseq2_Gene_UMI_Counts)) data("GeneLengths_mm10") data("CELseq2_SpikeIns_UMI_Counts") data("CELseq2_SpikeInfo") # estimation estparam <- estimateParam(countData = CELseq2_Gene_UMI_Counts, readData = CELseq2_Gene_Read_Counts, batchData = Batches, spikeData = NULL, spikeInfo = NULL, Lengths = GeneLengths_mm10, MeanFragLengths = NULL, Distribution = 'NB', RNAseq = 'singlecell', Protocol = 'UMI', Normalisation = 'scran', GeneFilter = 0.1, SampleFilter = 3, sigma = 1.96, NCores = NULL, verbose = TRUE) # plotting plotParam(estParamRes = estparam, Annot=TRUE) }