This function plots the results of evaluateSim for assessing the setup performance, i.e. normalisation method performance.

plotEvalSim(evalRes, Annot=TRUE)

Arguments

evalRes

The output of evaluateSim.

Annot

A logical vector. If TRUE, a short figure legend under the plot is included.

Value

A ggplot object.

Examples

if (FALSE) { # estimate gene parameters data("SmartSeq2_Gene_Read_Counts") Batches = data.frame(Batch = sapply(strsplit(colnames(SmartSeq2_Gene_Read_Counts), "_"), "[[", 1), stringsAsFactors = F, row.names = colnames(SmartSeq2_Gene_Read_Counts)) data("GeneLengths_mm10") estparam_gene <- estimateParam(countData = SmartSeq2_Gene_Read_Counts, readData = NULL, batchData = Batches, spikeData = NULL, spikeInfo = NULL, Lengths = GeneLengths_mm10, MeanFragLengths = NULL, RNAseq = 'singlecell', Protocol = 'Read', Distribution = 'ZINB', Normalisation = "scran", GeneFilter = 0.1, SampleFilter = 3, sigma = 1.96, NCores = NULL, verbose = TRUE) # define log fold change p.lfc <- function(x) sample(c(-1,1), size=x,replace=T)*rgamma(x, shape = 1, rate = 2) # set up simulations setupres <- Setup(ngenes = 10000, nsims = 10, p.DE = 0.1, pLFC = p.lfc, n1 = c(20,50,100), n2 = c(30,60,120), Thinning = c(1,0.9,0.8), LibSize = 'given', estParamRes = estparam_gene, estSpikeRes = NULL, DropGenes = FALSE, sim.seed = 66437, verbose = TRUE) # run simulation simres <- simulateDE(SetupRes = setupres, Prefilter = "FreqFilter", Imputation = NULL, Normalisation = 'scran', Label = 'none', DEmethod = "limma-trend", DEFilter = FALSE, NCores = NULL, verbose = TRUE) # evaluation evalsimres <- evaluateSim(simRes = simres) plotEvalSim(evalRes = evalsimres, Annot = TRUE) }