This function plots the results of evaluateROC for assessing relative operating characteristic curves and summary statistics.

plotEvalROC(evalRes,
cutoff=c('liberal', 'conservative'),
Annot=TRUE)

Arguments

evalRes

The output of evaluateROC.

cutoff

Character vector defining whether the "liberal" or "conservative" FDR control is considered.

Annot

A logical vector. If TRUE, a short figure legend under the plot is included.

Value

A ggplot object.

Examples

if (FALSE) { # estimate gene parameters data("CELseq2_Gene_UMI_Counts") estparam_gene <- estimateParam(countData = CELseq2_Gene_UMI_Counts, readData = NULL, batchData = NULL, spikeData = NULL, spikeInfo = NULL, Lengths = NULL, MeanFragLengths = NULL, RNAseq = 'singlecell', Protocol = 'UMI', Distribution = 'NB', Normalisation = "scran", GeneFilter = 0.1, SampleFilter = 3, sigma = 1.96, NCores = NULL, verbose = TRUE) # define log2 fold change p.lfc <- function(x) sample(c(-1,1), size=x,replace=T)*rgamma(x, shape = 1, rate = 2) # set up simulations setupres <- Setup(ngenes = 10000, nsims = 10, p.DE = 0.1, pLFC = p.lfc, n1 = c(20,50,100), n2 = c(30,60,120), Thinning = NULL, LibSize = 'equal', estParamRes = estparam_gene, estSpikeRes = NULL, DropGenes = FALSE, sim.seed = 34269, verbose = TRUE) # run simulation simres <- simulateDE(SetupRes = setupres, Prefilter = "FreqFilter", Imputation = NULL, Normalisation = 'scran', Label = 'none', DEmethod = "limma-trend", DEFilter = FALSE, NCores = NULL, verbose = TRUE) # evaluation evalrocres <- evaluateROC(simRes = simres, alpha.type = "adjusted", MTC = 'BH', alpha.nominal = 0.05, raw = FALSE) # plot evaluation plotEvalROC(evalRes = evalrocres, cutoff = "conservative", Annot = TRUE) }