This function plots the results of evaluateDE
for assessing the error rates and sample size requirements.
plotEvalDE(evalRes, rate=c('marginal', 'conditional'), quick=TRUE, Annot=TRUE)
evalRes | The output of |
---|---|
rate | Character vector defining whether the |
quick | A logical vector. If |
Annot | A logical vector. If |
A ggplot object.
if (FALSE) { # estimate gene parameters data("Bulk_Read_Counts") data("GeneLengths_hg19") estparam_gene <- estimateParam(countData = Bulk_Read_Counts, readData = NULL, batchData = NULL, spikeData = NULL, spikeInfo = NULL, Lengths = GeneLengths_hg19, MeanFragLengths = NULL, RNAseq = 'bulk', Protocol = 'Read', Distribution = 'NB', Normalisation = "MR", GeneFilter = 0.25, SampleFilter = 3, sigma = 1.96, NCores = NULL, verbose = TRUE) # define log fold change p.lfc <- function(x) sample(c(-1,1), size=x,replace=T)*rgamma(x, shape = 2, rate = 2) # set up simulations setupres <- Setup(ngenes = 10000, nsims = 10, p.DE = 0.1, pLFC = p.lfc, n1 = c(3,6,12), n2 = c(3,6,12), Thinning = c(1,0.9,0.8), LibSize = 'given', estParamRes = estparam_gene, estSpikeRes = NULL, DropGenes = FALSE, sim.seed = 4379, verbose = TRUE) # run simulation simres <- simulateDE(SetupRes = setupres, Prefilter = NULL, Imputation = NULL, Normalisation = 'MR', Label = 'none', DEmethod = "limma-trend", DEFilter = FALSE, NCores = NULL, verbose = TRUE) # DE evaluation evalderes <- evaluateDE(simRes = simres, alpha.type="adjusted", MTC='BH', alpha.nominal=0.05, stratify.by = "mean", filter.by = "none") plotEvalDE(evalderes, rate = "marginal", quick = FALSE, Annot = TRUE) plotEvalDE(evalderes, rate = "conditional", quick = FALSE, Annot = TRUE) }